55 research outputs found

    Quantum authentication with key recycling

    Get PDF
    We show that a family of quantum authentication protocols introduced in [Barnum et al., FOCS 2002] can be used to construct a secure quantum channel and additionally recycle all of the secret key if the message is successfully authenticated, and recycle part of the key if tampering is detected. We give a full security proof that constructs the secure channel given only insecure noisy channels and a shared secret key. We also prove that the number of recycled key bits is optimal for this family of protocols, i.e., there exists an adversarial strategy to obtain all non-recycled bits. Previous works recycled less key and only gave partial security proofs, since they did not consider all possible distinguishers (environments) that may be used to distinguish the real setting from the ideal secure quantum channel and secret key resource.Comment: 38+17 pages, 13 figures. v2: constructed ideal secure channel and secret key resource have been slightly redefined; also added a proof in the appendix for quantum authentication without key recycling that has better parameters and only requires weak purity testing code

    Attacks on quantum key distribution protocols that employ non-ITS authentication

    Full text link
    We demonstrate how adversaries with unbounded computing resources can break Quantum Key Distribution (QKD) protocols which employ a particular message authentication code suggested previously. This authentication code, featuring low key consumption, is not Information-Theoretically Secure (ITS) since for each message the eavesdropper has intercepted she is able to send a different message from a set of messages that she can calculate by finding collisions of a cryptographic hash function. However, when this authentication code was introduced it was shown to prevent straightforward Man-In-The-Middle (MITM) attacks against QKD protocols. In this paper, we prove that the set of messages that collide with any given message under this authentication code contains with high probability a message that has small Hamming distance to any other given message. Based on this fact we present extended MITM attacks against different versions of BB84 QKD protocols using the addressed authentication code; for three protocols we describe every single action taken by the adversary. For all protocols the adversary can obtain complete knowledge of the key, and for most protocols her success probability in doing so approaches unity. Since the attacks work against all authentication methods which allow to calculate colliding messages, the underlying building blocks of the presented attacks expose the potential pitfalls arising as a consequence of non-ITS authentication in QKD-postprocessing. We propose countermeasures, increasing the eavesdroppers demand for computational power, and also prove necessary and sufficient conditions for upgrading the discussed authentication code to the ITS level.Comment: 34 page

    Quantum encryption with certified deletion

    Get PDF
    Given a ciphertext, is it possible to prove the deletion of the underlying plaintext? Since classical ciphertexts can be copied, clearly such a feat is impossible using classical information alone. In stark contrast to this, we show that quantum encodings enable certified deletion. More precisely, we show that it is possible to encrypt classical data into a quantum ciphertext such that the recipient of the ciphertext can produce a classical string which proves to the originator that the recipient has relinquished any chance of recovering the plaintext should the decryption key be revealed. Our scheme is feasible with current quantum technology: the honest parties only require quantum devices for single-qubit preparation and measurements; the scheme is also robust against noise in these devices. Furthermore, we provide an analysis that is suitable in the finite-key regime.Comment: 28 pages, 1 figure. Some technical details modifie

    On Weak Keys and Forgery Attacks Against Polynomial-Based MAC Schemes

    Get PDF
    Abstract. Universal hash functions are commonly used primitives for fast and secure message authentication in the form of Message Authentication Codes (MACs) or Authenticated Encryption with Associated Data (AEAD) schemes. These schemes are widely used and standardised, the most well known being McGrew and Viega’s Galois/Counter Mode (GCM). In this paper we identify some properties of hash functions based on polynomial evaluation that arise from the underlying algebraic structure. As a result we are able to describe a general forgery attack, of which Saarinen’s cycling attack from FSE 2012 is a special case. Our attack removes the requirement for long messages and applies regardless of the field in which the hash function is evaluated. Furthermore we provide a common description of all published attacks against GCM, by showing that the existing attacks are the result of these algebraic properties of the polynomial-based hash function. We also greatly expand the number of known weak GCM keys and show that almost every subset of the keyspace is a weak key class. Finally, we demonstrate that these algebraic properties and corresponding attacks are highly relevant to GCM/2 +, a variant of GCM designed to increase the efficiency in software

    Reduction and Abstraction Techniques for BIP

    Get PDF
    Reduction and abstraction techniques have been proposed to address the state space explosion problem in verification. In this paper, we present reduction and abstraction techniques for component-based systems modeled in BIP (Behavior, Interaction and Priority). Given a BIP system consisting of several atomic components, we compute the product of two selected atomic components. The product operation often exposes opportunities for constant propagation in the product component that were hidden originally. Moreover, the product operation introduces states that are branching bisimilar. Our method detects and merges those states resulting in a behavior that may overapproximate the original one. The presented method is fully implemented. Our results show a drastic improvement in verifying BIP systems

    On the Query Complexity of Constructing PRFs from Non-adaptive PRFs

    Get PDF
    This paper studies constructions of pseudorandom functions (PRFs) from non-adaptive PRFs (naPRFs), i.e., PRFs which are secure only against distinguishers issuing all of their queries at once. Berman and Haitner (Journal of Cryptology, \u2715) gave a one-call construction which, however, is not hardness preserving -- to obtain a secure PRF (against polynomial-time distinguishers), they need to rely on a naPRF secure against superpolynomial-time distinguishers; in contrast, all known hardness-preserving constructions require ω(1)\omega(1) calls. This leaves open the question of whether a stronger superpolynomial-time assumption is necessary for one-call (or constant-call) approaches. Here, we show that a large class of one-call constructions (which in particular includes the one of Berman and Haitner) cannot be proved to be a secure PRF under a black-box reduction to the (polynomial-time) naPRF security of the underlying function. Our result complements existing impossibility results (Myers, EUROCRYPT \u2704; Pietrzak, CRYPTO \u2705) ruling out natural specific approaches, such as parallel and sequential composition. Furthermore, we show that our techniques extend to rule out a natural class of constructions making parallel but arbitrary number of calls which in particular includes parallel composition and the two-call, cuckoo-hashing based construction of Berman et al.\ (Journal of Cryptology, \u2719)

    BBB Secure Nonce Based MAC Using Public Permutations

    Get PDF
    In the recent trend of CAESAR competition and NIST light-weight competition, cryptographic community have witnessed the submissions of several cryptographic schemes that are build on public random permutations. Recently, in CRYPTO 2019, Chen et al. have initiated an interesting research direction in designing beyond birthday bound PRFs from public random permutations and they proposed two instances of such PRFs. In this work, we extend this research direction by proposing a nonce-based MAC build from public random permutations. We show that our proposed MAC achieves 2n/32n/3 bit security (with respect to the state size of the permutation) and the bound is essentially tight. Moreover, the security of the MAC degrades gracefully with the repetition of the nonce

    On the Computational Overhead of MPC with Dishonest Majority

    Get PDF
    We consider the situation where a large number nn of players want to securely compute a large function ff with security against an adaptive, malicious adversary which might corrupt t<cnt < cn of the parties for some given c[0,1)c \in [0,1). In other words, only some arbitrarily small constant fraction of the parties are assumed to be honest. For any fixed cc, we consider the asymptotic complexity as nn and the size of ff grows. We are in particular interested in the computational overhead, defined as the total computational complexity of all parties divided by the size of ff. We show that it is possible to achieve poly-logarithmic computational overhead for all c<1c < 1. Prior to our result it was only known how to get poly-logarithmic overhead for c<12c < \frac{1}{2}. We therefore significantly extend the area where we can do secure multiparty computation with poly-logarithmic overhead. Since we allow that more than half the parties are corrupted, we can only get security with abort, i.e., the adversary might make the protocol abort before all parties learn their outputs. We can, however, for all cc make a protocol for which there exists d>0d > 0 such that if at most dnd n parties are actually corrupted in a given execution, then the protocol will not abort. Our result is solely of theoretical interest

    Protecting against Multidimensional Linear and Truncated Differential Cryptanalysis by Decorrelation

    Get PDF
    The decorrelation theory provides a different point of view on the security of block cipher primitives. Results on some statistical attacks obtained in this context can support or provide new insight on the security of symmetric cryptographic primitives. In this paper, we study, for the first time, the multidimensional linear attacks as well as the truncated differential attacks in this context. We show that the cipher should be decorrelated of order two to be resistant against some multidimensional linear and truncated differential attacks. Previous results obtained with this theory for linear, differential, differential-linear and boomerang attacks are also resumed and improved in this paper
    corecore